150 Ampere STUD Power Diodes

Features

- Alloy diode
- Popular series for rough service
- Stud cathode and stud anode version

Typical Applications

- Welders
- Power supplies
- Motor controls
- Battery chargers
- General industrial current rectification

ELECTRICAL SPECIFICATIONS

$I_{\text {f(AV) }}$	Maximum average forward current $\mathrm{T}_{0}=150^{\circ} \mathrm{C}$	150 A
$V_{\text {FM }}$	Maximum peak forward voltage drop @ Rated $\mathrm{I}_{\text {(peak) }}$	1.33 V
$I_{\text {FSM }}$	Maximum peak one cycle (non-rep.) surge current 10 msec .	3570 A
$I_{\text {FRM }}$	Maximum repetitive peak forward current	750 A
$1^{2}+$	Max. 1^{2} t rating (non-rep.) 10 msec .	$64000 \mathrm{~A}^{2} \mathrm{Sec}$

THERMAL MECHANICAL SPECIFICATIONS

θ_{J-c}	Maximum thermal resistance junction to case	$0.25^{\circ} \mathrm{CM}$
$\theta_{\mathrm{c}-\mathrm{H}}$	Contact thermal resistance	$\mathrm{GD} 150 \mathrm{~N} / \mathrm{R} 0.07^{\circ} \mathrm{CM}$
T_{J}	Operating junction temp.	$-40^{\circ} \mathrm{C}$ to $200^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {slg }}$	Storage temperature	$-40^{\circ} \mathrm{C}$ to $200^{\circ} \mathrm{C}$
W	Approx. weight	100 gms.

Mounting torque GD150N/R	minimum	Not lubricated threads	14.1(125)	$\begin{gathered} N \cdot m \\ (\mathrm{lbf} \cdot \mathrm{in}) \end{gathered}$
	maximum		17.0 (150)	
	minimum	Lubricated threads	12.2 (108)	
	maximum		15.0 (132)	

ELECTRICAL RATINGS

TYPE NUMBER GD150N/R	01	02	04	06	08	10	12	14	16	
$V_{\text {RRM }}$	Max. repetitive peak reverse voltage (V)	100	200	400	600	800	1000	1200	1400	1600
$V_{\text {RSM }}$	Max. non-repetitive peak reverse voltage (V)	150	300	500	700	900	1100	1300	1500	1700
$V_{\text {R(RMs) }}$	Max. R.M.S. reverse voltage (V)	70	140	280	420	560	700	840	980	1120
V_{R}	Max. D.C. Blocking voltage (V)	100	200	400	600	800	1000	1200	1400	1600
	Recommended R.M.S. working voltage (V)	40	80	160	240	320	400	480	560	640
$I_{R M}$	Max. Peak reverse leakage current @ $V_{\text {RRM }}, T_{C}$ (mA)	15	15	15	12	9	7	7	6	5

The Custom Power Specialist

STUD Diode GD150NR-XX. Series

150 Ampere STUD Power Diodes

FORWARD CONDUCTION

PARAMETER	SYMBOL	TEST CONDITIONS			VALUES	UNITS
Maximum average forward current at case temperature	$I_{\text {(}}^{\text {(av }}$)	180° conduction, half sine wave			150	A
					150	${ }^{\circ} \mathrm{C}$
Maximum RMS forward current	$\mathrm{I}_{\mathrm{F}(\mathrm{RMSS})}$	DC at $142^{\circ} \mathrm{C}$ case temperature			235	
Maximum peak, one cycle forward, non-repetitive surge current	$I_{\text {FSM }}$	$t=10 \mathrm{~ms}$	No voltage	Sinusoidal half wave, initial $T_{J}=T_{J}$ maximum	3570	
		$\mathrm{t}=8.3 \mathrm{~ms}$	reapplied		3740	A
		$\mathrm{t}=10 \mathrm{~ms}$	$100 \% V_{\text {RRM }}$		3000	
		$\mathrm{t}=8.3 \mathrm{~ms}$	reapplied		3140	
Maximum $L^{2} \mathrm{t}$ for fusing	$12^{2} \mathrm{t}$	$t=10 \mathrm{~ms}$	No voltage		64	$k A^{2} \mathrm{~S}$
		$\mathrm{t}=8.3 \mathrm{~ms}$	reapplied		58	
		$\mathrm{t}=10 \mathrm{~ms}$	$100 \% V_{\text {RRM }}$ reapplied		45	
		$\mathrm{t}=8.3 \mathrm{~ms}$			41	
Maximum $1^{2} \sqrt{\text { l }}$ for fusing	$1^{2} \sqrt{ } \mathrm{t}$	$\mathrm{t}=0.1$ to 10 ms , no voltage reapplied			640	$k A^{2} \sqrt{ }$ s
Low level value of threshold voltage	$V_{\text {F(TO) }} 1$	$\left(16.7 \% \times \pi \times \mathrm{I}_{\mathrm{F}(\mathrm{aV})}<1<\pi \times \mathrm{I}_{\mathrm{F}(\mathrm{aV})}\right) . \mathrm{T}_{\mathrm{J}}=\mathrm{T}_{\mathrm{J}}$ maximum			0.67	V
High level value of threshold voltage	$\mathrm{V}_{\mathrm{F}(\mathrm{TO}) 2}$	$\left(1>\pi \times \mathrm{I}_{\mathrm{F}(\mathrm{aV})}\right), \mathrm{T}_{J}=T_{J}$ maximum			0.83	
Low level value of fonward slope resistance	${ }_{\text {ff }}$	$\left(16.7 \% \times \pi \times \mathrm{I}_{\mathrm{F}(\mathrm{aV})}<1<\pi \times \mathrm{I}_{\mathrm{F}(\mathrm{aV})}\right) . \mathrm{T}_{J}=\mathrm{T}_{J}$ maximum			1.42	$m \Omega$
High level value of forward slope resistance	$\mathrm{r}_{\text {+ }}{ }^{\text {2 }}$	$\left(I>\pi \times I_{F(A V)}\right), T_{J}=T_{J}$ maximum			0.91	
Maximum fonward voltage drop	$V_{\text {FM }}$	$\mathrm{I}_{\mathrm{pk}}=47 \mathrm{f} \mathrm{A}_{1} \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{t}_{\mathrm{p}}=10 \mathrm{~ms}$ sinusoidal wave			1.33	V

$\Delta \mathbf{R}_{\text {thJc }}$ CONDUCTION							
CONDUCTION ANGLE	SINUSOIDAL CONDUCTION	RECTANGULAR CONDUCTION	TEST CONDITIONS	UNITS			
180°	0.031	0.023					
120°	0.038	0.040					
90°	0.048	0.053	$\mathrm{~T}_{J}=T_{J}$ maximum	KW			
60°	0.071	0.075					
30°	0.120	0.121					

Note

- The table above shows the increment of thermal resistance Rithcc when devices operate at different conduction angles than DC

STUD Diode GD150NRR-XX..Series

ORDER INFORMATION TABLE

(1) - GD150-Essential Part no.
(2) - None - Stud with $1 / 2$ " 20 UNF-2A Threading

M Stud with M12 Threading
(3) - $\quad \begin{aligned} & \mathrm{N}-\mathrm{Normal} \text { polarity } \\ & \mathrm{R}-\mathrm{Reverse} \text { polarity }\end{aligned}$
(4) - Voltage Rating (See table)

Outline Table

Tel: 01444243452 Fax: 01444870722 E-Mail: enquiries@gdrectifiers.co.uk

STUD Diode GD150NR-XX. Series

GD150N/R-XX..SERIES

Maximum Instantaneous Foward Voltage Drop (Volts)
Fig. 1 - Forward Voltage Drop Vs. Forward Current

Maximum Allowable Case Temperature (${ }^{\circ} \mathrm{C}$)
Fig. 2 - Average Forward Current Vs.
Case Temperature

Average Forward Current Over Full Cycle (Amperes)
Flg. 4 - Average Forward Power Loss Vs. Low Level Forward Current

Fig. 5 - Transient Thermal Impedance

Fig. 6 - Diode GD150N/R Mounted on Heat Sink Type K5 with eHA-NC $0.55^{\circ} \mathrm{C} / \mathrm{N}$ FC $013^{\circ} \mathrm{CN}$

Last Update : FEB. 2006

