
SKN 5

Stud Diode

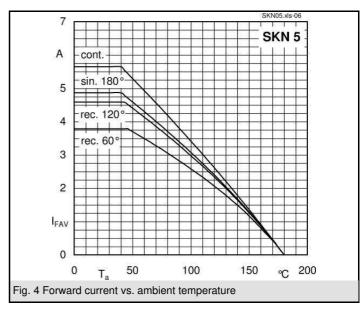
Rectifier Diode

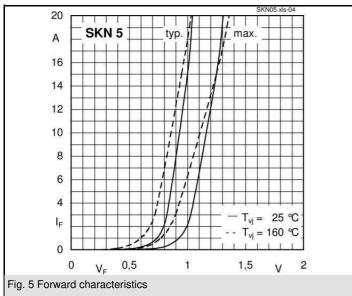
SKN 5

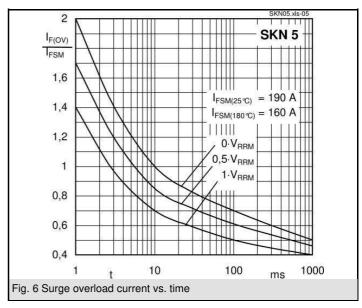
Features

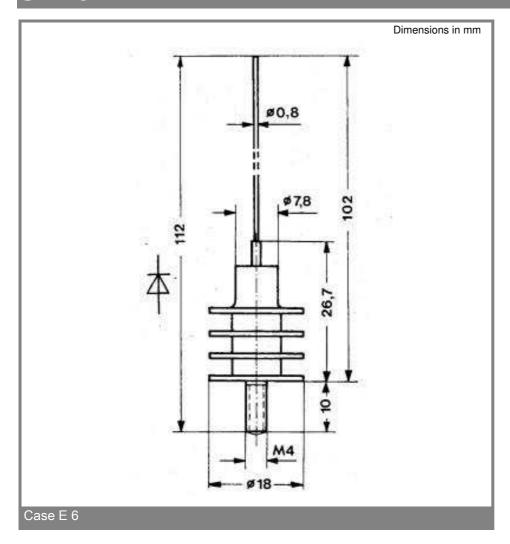
- Reverse voltages up to 1600 V
- Hermetic metal case with glass insulator
- Anode side threaded stud ISO M4
- SKN: anode to stud
- · With integrated cooling fins


Typical Applications*


- · All-purpose rectifier diodes
- For severe ambient conditions
- Recommended snubber network: RC: 0,02 μ F, 500 Ω (P $_{R}$ = 1 W) R $_{P}$ = 270 k Ω (P $_{R}$ = 2 W)


V_{RSM}	V_{RRM}	I _{FRMS} = 10 A (maximum value for continuous operation)		
V	V	$I_{FAV} = 5 \text{ A (sin. 180; T}_a = 45 \text{ °C)}$		
200	200	SKN 5/02		
400	400	SKN 5/04		
800	800	SKN 5/08		
1200	1200	SKN 5/12		
1600	1600	SKN 5/16		


Symbol	Conditions	Values	Units
I_{FAV}	sin. 180; T _a = 45 °C	5	Α
I _{FSM}	T _{vi} = 25 °C; 10 ms	190	Α
	T _{vi} = 180 °C; 10 ms	160	Α
i²t	T _{vj} = 25 °C; 8,3 10 ms	180	A²s
	T _{vj} = 180 °C; 8,3 10 ms	130	A²s
V _F	T _{vi} = 25 °C; I _F = 15 A	max. 1,25	V
$V_{(TO)}$	T _{vi} = 180 °C	max. 0,85	V
r _T	T _{vi} = 180 °C	max. 25	mΩ
I_{RD}	$T_{vj} = 180 ^{\circ}\text{C}; V_{RD} = V_{RRM}$	max. 2,2	mA
Q_{rr}	$T_{vj} = 160 ^{\circ}\text{C}; - di_{F}/dt = 10 \text{A/}\mu\text{s}$	18	μC
R _{th(j-c)}		1,8	K/W
R _{th(j-a)}		25	K/W
T _{vj}		- 40 + 180	°C
T _{stg}		- 55 + 180	°C
V _{isol}		-	V~
M _s	to heatsink	0,8	Nm
а		5 * 9,81	m/s²
m	approx.	20	g
Case		E 6	



^{*} The specifications of our components may not be considered as an assurance of component characteristics. Components have to be tested for the respective application. Adjustments may be necessary. The use of SEMIKRON products in life support appliances and systems is subject to prior specification and written approval by SEMIKRON. We therefore strongly recommend prior consultation of our personal.