SKYPER PRIME 1400A / 1700V PP

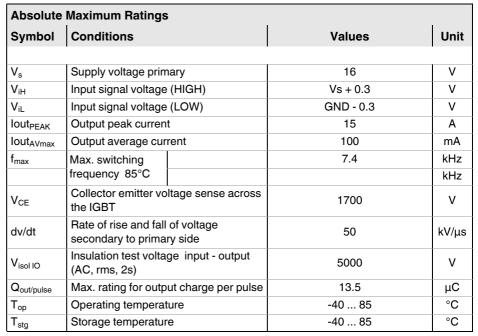
IGBT Driver for

PrimePack

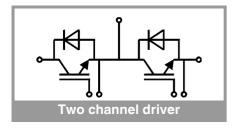
Order Nr. L5066803

SKYPER PRIME 1400A / 1700V PP

Features


- Dynamic short circuit detection with SoftOff
- Galvanic isolated DC link measurement
- Galvanic isolated temp measurement
- PWM output for sensor signals
- · Over voltage trip
- · ROHS, UL recognized
- DC Bus up to 1200V

Typical Applications*


- · Regenerative inverters
- Traction
- Large drives

Remarks

- For environmental conditions please check technical explanation
- The driver has to be 100% tested for high voltage before use

Characteristics							
Symbol	Conditions	min.	typ.	max.	Unit		
V _s	Supply voltage primary side	14.4	15	15.6	V		
I _{S0}	Supply current primary (no load)		85		mA		
	Supply current primary side (max.)	1000		mA			
Vi	Input signal voltage on / off	Vs/0		V			
V _{IT+}	Input treshold voltage (HIGH)	8.6 10		V			
V _{IT-}	Input threshold voltage (LOW)	5 6.7		6.7	V		
R _{IN}	Input resistance (switching signal)	30		kΩ			
C _{IN}	Input capacitance (switching signals)	1		nF			
V _{G(on)}	Turn on output voltage	15		V			
$V_{G(off)}$	Turn off output voltage	-8		V			
t _{d(on)IO}	Input-output turn-on propagation time	1		μs			
t _{d(off)IO}	Input-output turn-off propagation time	1			μs		
$t_{d(err)SCP}$	Error sec - prim propagation time	0.6		μs			
t _{d(err)HALT}	Error primary - secondary side propagation time	' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '		μs			
t _{TD}	Top-Bot interlock dead time	4		μs			
t _{jitter}	Signal transfer prim - sec (total jitter)	25		ns			
t _{SIS}	Short pulse suppression	0.4		μs			
t _{POR}	Power-On-Reset completed	0.1		S			
t _{pRESET}	Error reset time	0.03			ms		
V _{CEstat}	Reference voltage for V _{CE} -monitoring		8.5		V		
t _{bl}	VCE monitoring blanking time (dynamic)	4		μs			
V_{DCtrip}	Over voltage trip level (adjustable)	1250		V			
R _{Gon}	Driver gate resistor at switch-on	0.4		Ω			
R _{Goff}	Driver gate resistor at switch-off	0.25		Ω			
MTBF	Mean Time Between Failure Ta = 40°C	3		10 ⁶ h			

SKYPER PRIME 1400A / 1700V PP

Signal Connector

PIN	Signal	Function	Specifications	
X1:01	IF_PWR_15P	Drive power supply	Stabilised +15V ±4%	
X1:02	IF_DC_LINK	Digitised DC Link signal	PWM output, 15V	
X1:03	IF_PWR_15P	Drive power supply	Stabilised +15V ±4%	
X1:04	IF_GND	GND	To be connected to ground	
X1:05	IF_PWR_15P	Drive power supply	Stabilised +15V ±4%	
X1:06	IF_GND	GND	To be connected to ground	
X1:07	IF_nERROR_IN	ERROR input	LOW (GND, U _{TH} 1V) = External error	
			HIGH (VP, U _{TH} 14V) = No error	
			Max input current 1,8mA, can be	
			connected with IF_nERROR_OUT	
X1:08	IF_GND	GND	To be connected to ground	
X1:09	IF_nERROR_OUT	ERROR output	HIGH = NO ERROR ;open collector output	
			15V / 10mA (external pull up	
			Resistor necessary)	
X1:10	IF_GND	GND	To be connected to ground	
X1:11	IF_HB_TOP	Switching signal input (TOP switch)	Positive 15V CMOS logic,	
			LOW = TOP switch off;	
			HIGH = TOP switch on	
X1:12	IF_GND	GND	To be connected to ground	
X1:13	IF_nERROR_OUT	ERROR output	HIGH = NO ERROR; open collector	
			output; max. 15V / 10 mA (external	
			pull up resistor necessary)	
X1:14	IF_GND	GND	To be connected to ground	
X1:15	IF_HB_BOT	Switching signal input (BOTTOM switch)	Positive 15V CMOS logic,	
			LOW = BOT switch off;	
			HIGH = BOT switch on	
X1:16	IF_GND	GND	To be connected to ground	
X1:17	IF_CFG_SELECT	Interlock set up	HIGH (VP) = No interlock	
			LOW (GND) = Interlock 4μs	
X1:18	IF_GND	GND	To be connected to ground	
X1:19	IF_TEMP	Digitised NTC signal	PWM output, 15V	
X1:20	IF_GND	GND	To be connected to ground	
		•		

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, chapter IX.

*IMPORTANT INFORMATION AND WARNINGS

The specifications of SEMIKRON products may not be considered as guarantee or assurance of product characteristics ("Beschaffenheitsgarantie"). The specifications of SEMIKRON products describe only the usual characteristics of products to be expected in typical applications, which may still vary depending on the specific application. Therefore, products must be tested for the respective application in advance. Application adjustments may be necessary. The user of SEMIKRON products is responsible for the safety of their applications embedding SEMIKRON products and must take adequate safety measures to prevent the applications from causing a physical injury, fire or other problem if any of SEMIKRON products become faulty. The user is responsible to make sure that the application design is compliant with all applicable laws, regulations, norms and standards. Except as otherwise explicitly approved by SEMIKRON in a written document signed by authorized representatives of SEMIKRON, SEMIKRON products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury. No representation or warranty is given and no liability is assumed with respect to the accuracy, completeness and/or use of any information herein, including without limitation,

SKYPER PRIME 1400A / 1700V PP

warranties of non-infringement of intellectual property rights of any third party. SEMIKRON does not assume any liability arising out of the applications or use of any product; neither does it convey any license under its patent rights, copyrights, trade secrets or other intellectual property rights, nor the rights of others. SEMIKRON makes no representation or warranty of non-infringement or alleged non-infringement of intellectual property rights of any third party which may arise from applications. Due to technical requirements our products may contain dangerous substances. For information on the types in question please contact the nearest SEMIKRON sales office. This document supersedes and replaces all information previously supplied and may be superseded by updates. SEMIKRON reserves the right to make changes.